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ABSTRACT

The field of information retrieval (IR) is an important area in computer science. This domain helps us 
to find information that we are interested in from an important volume of information. A search engine 
is the best example of the application of information retrieval to get the most relevant results. In this 
paper, the authors propose a new recommendation approach for recommending relevant documents 
to a search engine’s users. In this work, they proposed a new approach for calculating the similarity 
between a user query and a list of documents in a search engine. The proposed method uses a new 
reinforcement learning algorithm based on n-grams model (i.e., a sub-sequence of n constructed 
elements from a given sequence) and a similarity measure. Results show that the method outperforms 
some methods from the literature with a high value of accuracy.
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1. INTRODUCTION

Since the most recent decade, search engines have become an essential tool in our regular daily life. 
At the point when we search for an information, we frequently go to our preferred search engine and 
look at the returned pages, users of web search tools calmly hope to get precise and close prompt 
responses to questions and demands, only by entering a short query — a couple of words — into 
a text box and tapping on a search button. The system of these search engines return a list of web 
pages containing the terms in the query, this list is constructed by identify eliminate duplicate and 
redundant pages, compute a score of each page to rank the list of web pages, then return the top results 
of the list, but these results do not always return the desired information. This is a major issue in 
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information retrieval. Information retrieval researchers have focused on a few key issues, one of these 
issues is relevance. A document is considered relevant to a given query if its contents (completely or 
partially) satisfy the information need represented by the query, though this sounds simple, there are 
many factors that come in a person’s decision as to whether a specific document is relevant. These 
factors should be taken into consideration when designing algorithms for comparing text and ranking 
documents to get the best result in a search engine. There are many fields that help us to get relevant 
documents; one of them is query reformulation. Users of search engines usually have interaction in a 
process of query formulation and reformulation if they are unsatisfied with the results from the initial 
query so as to meet their information desires. An initial query is given and then updated in light of 
the results obtained until the user get a set of relevant documents and get satisfied. This process is 
known as query reformulation. There are a minimum of 2 reasons why query reformulation occurs.

Firstly, the user could have a quite specific information would like in mind but is unsure how 
to express that require in the query language. Secondly, the user’s information want might alter as a 
consequence of examining the search results. For example a user search for the query ”quilting” then 
get a list of quilting stores, then decide to update their information to get stores in their location. Text 
similarity measures play associate degree progressively important role in text connected research and 
applications in tasks like information retrieval, text classification, document cluster, topic detection, 
topic following, questions generation, question answering, essay scoring, short answer scoring, 
machine translation, text report and others. Finding similarity between words may be a fundamental 
part of text similarity that is then used as a primary stage for sentence, paragraph and document 
similarities. Words will be similar in 2 ways in which lexically and semantically. Words are similar 
lexically if they have the same character sequence. Words are similar semantically if they have the 
same thing, same means, used in the same way, and one is a type of the other.

In this paper, we propose a new approach to improve the results of a search engine based on 
reinforcement learning. Reinforcement learning (RL) (Sutton & Barto, 2013) is a learning technique 
in which an agent learns from the interactions with the environment by trial and-error, Reinforcement 
learning problems involve learning what to do—how to map situations to actions—so as to maximize 
a numerical reward signal. In an essential way, they are closed-loop problems because the learning 
system’s actions influence its later inputs. Moreover, the user is not told which actions to take, as 
in many forms of machine learning, but instead must discover which actions yield the most reward 
by trying them out. In the most interesting and challenging cases, actions may affect not only the 
immediate reward but also the next situation and, through that, all subsequent rewards. These three 
characteristics—being closed-loop in an essential way, not having direct instructions as to what actions 
to take, and where the consequences of actions, including reward signals, play out over extended time 
periods—are the three most important distinguishing features of reinforcement learning problems.

The action in our system corresponds to changing the n in n-gram for calculating the similarity 
between a query and documents in our corpus, and the reward is the accuracy of the result obtained, 
all that is with the use of the semantic similarity and the N-grams model.

Our work will be divided into parts, the first concerning the Natural Language Processing (NLP) 
Methods, by applying different text preprocessing methods, such as removing stop words from 
documents, and get the stem of words, get the n-grams for documents, after the preprocessing stage 
we will calculate the semantic similarity between documents in our corpus and query to get in the 
last step the most relevant documents. In the step of calculation of semantic similarity, we apply the 
RL algorithm to find the optimal path the user must follow for finding an optimal result.

The rest of this paper is organized as follows: Section 2 presents a literature review, in Section 
3 we will describe our Research methodology (the different text preprocessing methods exist in the 
literature, how we divide documents into n-grams, the calculation of the semantic similarity between 
documents using reinforcement learning and finally how we obtain the relevant documents). Section 
4 presents the experimental results and finally, in Section 5 the conclusion and the perspectives.
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2. LITERATURE REVIEW

Several definitions of information retrieval have been defined describe searching as a process of 
storage, organization, representation, and access to information by the user.

To provide the right results to users, many studies have been presented on measuring document 
similarity in recent years for facilitating the search for information in complex information systems 
such as a search engine.

Authors in (Cho, Lebanoff, Foroosh & Liu, 2019) proposed a new approach inspired by the 
determinantal point process for multi-document summarization. This approach includes a diversity 
measure assessing the redundancy between sentences, and a quality measure that indicates the 
importance of sentences. DPP extracts a set of summary sentences that are both representatives of 
the document set and remain diverse; they measure redundancy between a pair of sentences based on 
surface form and semantic information. Authors exploit capsule networks for determining sentence 
similarity for summarization purpose and shows the performance of this approach. Researchers in 
the article presented in (Gao, Zhang & Chen, 2015) presented a new approach for semantic similarity 
measure which is based on edge-counting and information content theory, the proposed measure 
nonlinearly transforms the weighted shortest path length between the compared concepts to achieve 
the semantic similarity results. The method is subcategorized into three strategies: strategy 1 weights 
all the edges along the shortest path between the compared words, strategy 2 uses depth of words to 
weight the shortest path length, and strategy 3 utilizes IC of words to weight the shortest path length. 
The Experimental Results show the efficiency of this method compared to some methods from the 
literature. Authors of (Cai, Zhang, Lu & Che, 2018) present a hybrid WordNet-based approach for 
concept semantic similarity measurement based on the information content-weighted shortest path 
to measuring concept semantic similarity, which leverages the information content(IC) of concepts 
to weight the shortest path distance between concepts. Authors of this paper develop an intrinsic IC 
model by taking various semantic properties and structures of WordNet into consideration to improve 
the performance of IC computation. Finally, they summarize and classify the technical characteristics 
of previous WordNet-based approaches. The Experimental Results show that the results of the proposed 
hybrid method based on IC-weighted path distance in WordNet are more correlated with the human 
judgment of similarity in terms of the correlation coefficient.

Many studies have been focused on query reformulation in recent years for facilitating the search 
for information in complex information systems such as a search engine to get the best results.

Nogueira and Cho in (Nogueira & Cho, 2017) present a query reformulation approach based 
on a neural network that rewrites a query to boost the number of relevant documents returned in the 
search engine. The authors train the neural network with reinforcement learning. The actions relate 
to choosing terms to get a new reformulated query, and the reward is the recall of the document. The 
results show that the approach of the reformulation works better than using the original query alone 
to get the relevant documents, and they found that the supervised methods have a better performance 
than the unsupervised ones, but perform worse than Reinforcement Learning-based models.

Narasimhan et al. (Narasimhan, Karthik, Yala & Barzilay, 2016) used a reinforcement learning-
based approach to reformulate query, it is a closet work to the previous article. A key difference is 
that in this work the reformulation component uses domain-specific template queries. Otherwise in 
(Nogueira & Cho, 2017), assumes open-domain queries.

Another work that uses query reformulation is that presented in (Azilawati, Abu Bakar & Azman, 
2016), in this article authors introduced a new hybrid approach based on the combination of ontology 
terms and keywords from the query to reformulate new queries. Experimental results show that the 
proposed hybrid method returns the best results than the use of the keywords extracted from the 
query or the ontology terms alone.

Authors in (Kamlesh, Pinal & Parth Shah, 2014) proposed a new approach to get the best relevant 
links in a search engine through User Profiling and Query Reformulation, the researchers propose a 
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framework that identifies relevant search term for a particular user from previous search history by 
analyzing web log file maintained in the server, then removes the ambiguities from the original query 
by appending some useful keywords, the proposed methodology identify user interest on retrieved 
results by combing the user interest value generated using the Vector Space Model (VSM) and the 
actual rank of that link, finally this method suggest some keyword to get the best results from the 
original query. The experimental results of this approach show the effectiveness of the proposed 
search engine.

Several articles use Reinforcement Learning (RL) in the domain of search engines, as we 
can found in (Derhami, Khodadadian, Ghasemzadeh & Bidoki, 2013), the authors of this article 
proposed RL Rank algorithm which is a new connectivity-based method for ranking web pages, This 
proposed method considers the rank determination of a page as an RL problem where each web page 
is considered as a state and value function of the state is used to determine the score of that state. 
The actions are the transition from the current page to the next page, and the reward corresponds to 
the number of out links from the current page. The researchers propose a hybrid approach using a 
combination of BM25 (Robertson & Walker, 1994) as a content-based algorithm and RL Rank which 
give significant results in the experimental results.

The most proposed approach presented earlier use individual methods for finding similar 
documents to a user query. Our approach take advantages of an hybrid method (that combines between 
query reformulation, reinforcement learning and semantics) to improve the results of our system and 
to find the most relevant documents (minimize the error rate)

3. RESEARCH METHODOLOGY

In this section, we going to introduce the various steps of our work and the techniques used in our 
proposed approach. As we have presented before the point of our work is to get the most relevant 
documents for a query in a web search engine using reinforcement-learning algorithms based on 
n-grams model and semantic similarity.

Our system (RL approach) is composed of different steps, we will start by the preparation of the 
query and documents in our corpus (remove stop-words, get stem of words), then get n-grams word 
(the notion of query reformulation) and finally calculate similarity using a hybrid approach that uses 
a syntactic similarity and semantic similarity (El hadi, Madani, El ayachi & Erritali, 2019).

3.1 Construction of the Corpus
In this paper, we are collecting data from ezinearticles.com and divide them into different categories, 
we collect 10 articles for each category from the website to construct our corpus and each article is 
inserted in a document.

3.2 Text Preprocessing Method
After the steps of the collection of articles and inserted them in documents, we have constructed our 
data-set, but before the classification and the application of our proposal, we must make some text 
pre-processing methods to prepare the documents and the query for the classification and to delete 
the noise exist in them. Several works from the literature demonstrate that the application of the text 
pre-processing methods on the text improve the quality of the classification, in our work we apply 
some text pre-processing methods such as:

•	 Tokenization: Which is the phase of splitting the text into terms or tokens by removing white 
spaces, commas and other symbols etc. This step is very important in our work because we focus 
on individual words.
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•	 Removing Stop-word: There is a kind of word called stopword. They are words of common 
function in a sentence, such as ’a’, ’the’, ’,’, ’to’, ’at’, etc. These words seem useless for the 
calculating of the similarity between documents, for that reason they should be deleted.

•	 Removing numbers: In general, numbers have no use when measuring similarity and are removed 
from documents to refine the document’s content.

•	 Removing Punctuation: We don’t need pits as characteristics, this are only symbols for separate 
sentences and words so we delete them from documents.

3.3 Stemming
Stemming is utilized in many information retrieval (IR) systems to decrease variation word structures 
to regular roots. It is one of the least complex applications of natural language processing to IR. In 
fact, it is very important in most of the information retrieval systems. The main purpose of stemming 
is to reduce different grammatical forms/word forms of a word (noun, adjective, verb, adverb, etc.) 
to its root form. It would do this by using context and grammar to determine the original form of 
the word, this can be used in many domains like text searching, and the best example of this is web 
search engines. Searching for the root of a word gives a wider search than trying to find an exact 
match. Stemming helps in mapping grammatical variations of a word to instances of the same term. 
In table 1, we present examples of different words with their stemming.

3.4 N-gram Model
N-gram based techniques are one of the most important concepts in natural language processing 
(NLP) and its applications. Traditional n-grams are sequences of elements as they appear in texts. 
These components can be words, POS tags, stop-words, characters, or any other elements as they 
encounter one afterward another in texts. By convention, “n” corresponds to the number of elements 
in a sequence.

Table 2 shows that for a string the n-gram model divides the word into “n” character with not 
losing any combination of two successive characters. We can apply the n-gram technique in a text 
that contains a list of words, table 3 shows on the other hand, that the n-gram does the same thing 
as the string but this time with words. Finally, we got a list of n-grams that will help us in our work.

Table 1. Example of stem of words

Original word Stemmed word

close 
closed 
closely closing

close

amuse 
amused 
amusement 
amusements amusing

amus

Table 2. Example of n-gram of a word = “Document”

N-gram Example

2-grams do, oc, cu, me, en, nt

3-grams doc, ocu, cum, ume, men, ent

4-grams docu, ocum, cume, umen, ment
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In many domains, techniques based on n-grams gave very good results. For instance, in natural 
language processing, n-grams can be used to distinguish between documents written in different 
languages in multi-lingual collections and to gage topical similarity between documents in the 
same language [18, 24], but also in some other problems. In this field, n-grams show some of its 
good features:

•	 Robustness: relatively insensitive to spelling variations/errors;
•	 Completeness: token alphabet known in advance;
•	 Domain independence: language and topic independent;
•	 Efficiency: one-pass processing; and
•	 Simplicity: no linguistic knowledge is required.

On the other hand, the problem, which can appear in using n-grams, is the exponential explosion. 
Many algorithms with n-grams are computationally too expensive even for n = 5 or n = 6, with larger 
n the n-gram cardinality grows exponentially.

3.5 Semantic Similarity
In this subsection, we will present the semantic similarity approach used in this paper 
and how we exploit it to make our new approach (how we use it in our RL approach), for 
that, we use the notions of the information retrieval systems (IRS) and some semantic 
similarity measures.

In this paper, we use our hybrid semantic similarity approach presented in (El hadi & al, 2019), it 
is a method that uses cosine similarity as a syntactic similarity, and Leacock and Chodorow measure 
as semantic similarity.

3.5.1 Cosine Measure
The cosine similarity calculates the similarity between two n-dimensional vectors by 
determining the cosine of the angle between them. This metric is frequently used in text mining. 
It uses the complete vector representation, that is to say, the objects’ frequency (words). Two 
documents are similar if their vectors are combined. If two objects are not similar, their vectors 
form an angle (X, Y) whose Cosine represents the similarity value. The formula 1 is defined 
by the ratio of the scalar product of vectors X and Y and the product of the norm of x and y. 
The formula is defined by the ratio of the scalar product of vectors x and y and the product 
of the norm of x and y:
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Table 3. Example of n-gram of a text = “I want to eat Chinese food”

N-gram Example

2-grams I want, want to, to eat, eat chinese, chinese food

3-grams I want to, want to eat, to eat chinese, eat chinese food

4-grams I want to eat, want to eat chinese, to eat chinese food
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Each element of the vectors X and Y present the rating of a concept (0 or 1).

3.5.2 Construction of Vectors
In this paper, to construct the vectors, instead of using the number of times the n-grams appear in a 
document d (frequency), we are developing a new method for calculating the frequency of an n-gram 
in a document. Let D1 and D2 two documents in a corpus with:

D1 = “Car was cleaned by Jack”	
D2 = “Jack drives his car well”	

For example, a bi-gram (2-gram) approach will create a vocabulary set like the following:

S1 = [“car was”, “was cleaned”, “cleaned by”, “by jack”]	
S2 = [“jack drives”, “drives his”, “his car”, “car well”]	

Therefore, after getting S1 and S2 we will construct our complete bi-gram corpus, which give us:

S = [“car was”, “jack drives”, “was cleaned”, “drives his”, “cleaned by”, “his car”, “by jack”, 	  
“car well”]	

The classical method of the vector representation consists of finding the bi-gram represented in 
S1 and S2 in our complete corpus S, if we find the bi-gram we will represent it in Vi by 1, otherwise 
we will represent it by 0.

The application of the classical method of the sentences will give us the following result:

V1 = [1 0 1 0 1 0 1 0]	
V2 = [0 1 0 1 0 1 0 1]	

In the developed method, to calculate the frequency of n-gram, we will calculate the frequency 
of each word in n-gram in all corpus then get the average of all the frequencies calculated:
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where:

•	 fc(w): This is the number of times certain words (w) appear in the document.
•	 s: the number of words in the full document.
•	 n: the number of gram used.

After applied the proposed method we get for the previous example:

Vc1 = [0.18 0.06 0.25 0 0.25 0.06 0.18 0.06]	
Vc2 = [0.12 0.18 0 0.25 0 0.25 0.06 0.18]	
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3.5.3 Leacock and Chodorow Measure
This method presented by (Leacock & Chodorow, 1994), which combines the counting of the arcs 
method and the informational contents method. The proposed measure by Leacock and Chodorowis 
based on the M is the length of the shortest path between two synsets of Wordnet. The formula 3 
define this technique (Leacock & Chodorow, 1994):
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M is the length of the longest path, which separates the concept root, of ontology, of the concept 
more in the bottom. We indicate that cd(X,Y) is the length of the shortest path, which separates X and Y.

3.5.4 Hybrid Used Approach
In this paper, we will use our hybrid approach presented in (El hadi & al, 2019) that combines cosine 
similarity and Leacock and Chodorow similarity, and presented with the following formula:
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3.6 Big Data
One of the problems of searching the most pertinent document is the time necessary to have the 
desired result if we work on a very voluminous corpus, a very interesting solution is the use of Big 
Data to parallelize the work that is to say distributed it between several machines, using the framework 
Hadoop with the MapReduce programming model and HDFS as a distributed file system.

3.6.1 Framework Hadoop
Framework Hadoop Apache’s Hadoop is an open-source implementation of Google’s Map/Reduce 
framework. It enables distributed, dataintensive and parallel applications by decomposing a massive 
job into smaller tasks and a massive data set into smaller partitions such that each task processes a 
different partition in parallel. The main abstractions are: 1. MAP tasks that process the partitions of 
a data set using key/value pairs to generate a set of intermediate results and 2. REDUCE tasks that 
merge all intermediate values associated with the same intermediate key. Hadoop uses the Hadoop 
Distributed File System (HDFS), which is an implementation of the Google File System (GFS) for 
storing data (Karun & Chitharanjan, 2013).

3.6.2 Hadoop Distributed File System HDFS
The Hadoop Distributed File System (HDFS) (Carlberger, Dalianis, Hassel & Knutsson, 2001) is an 
open-source distributed storage system inspired by the design of GFS. HDFS is initially developed 
for the Hadoop MapReduce computation engine. With the rapid advancement of the Apache Hadoop 
project, HDFS now serves a thriving ecosystem of open-source big data technologies, such as Giraph, 
Spark, Pig, Hive, and HBase. The performance of HDFS is crucial to all these components built on 
top of it (Wu & Hong, 2015).
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HDFS cluster has master/slave architecture with a single Name Node as the master server, which 
manages the file system namespace and regulates access to files by clients. The slaves are a number 
of Data Nodes. Usually, one per node in the cluster, which manage storage attached to the nodes that 
they run on. HDFS provides a file system namespace and allows user data to be stored in files (Karun 
& Chitharanjan, 2013). A file is partitioned into one or more blocks and these blocks are stored in a 
set of Data Nodes. The file system namespace operations like opening, closing, and renaming of files 
and directories are done by the Name Node. It also decides the mapping of blocks to Data Nodes.

3.6.3 MapReduce
The MapReduce framework has two basic operations on the data i.e. Mapper and Reducer function:

•	 Mapper: It is applied to all input key-value pairs, which generate many intermediate key-value 
pairs. Mapper next sorts the set of key-value pairs by their keys. The combiner can emit any 
number of key-value pairs, but the keys and values must be of the same type as the mapper 
output then partitioners are responsible for dividing the intermediate keyspace and assigning 
intermediate key-value pairs to reducers (Verma, Mansuri & Jain, 2016).

•	 Reducer: The Reducer’s first job is to gather all of its input from the various Mapper output 
partitions. The sort is functioning here, the shuffle and sort occur simultaneously from different 
groups. After Shuffle and Sort reduce work, the output of the reduce task is returned on file 
system (Verma & al, 2016).

3.7 Proposed Method
In this subsection, we describe our proposed approach based on semantic similarity and reinforcement 
learning. Our new reinforcement learning approach is based on n-gram and the semantic similarity 
for finding the optimal result. Our idea is that each n-gram has his own most relevant document, so 
we need to adapt the learning process based on the n-gram model (find the optimal path that the user 
must follow to reach the goal optimally).

•	 Reinforcement learning (RL): Reinforcement learning (RL) is an intelligent technique with the 
ability to learn from interaction with the environment. It learns from trial and error and generally 
does not need any training data or a user model. At the beginning of the learning process, the 
RL agent does not have any knowledge about the actions it should take. After a while, the agent 
learns which actions yield the maximum reward. The problem consists of an agent with its 
various states S and a set of actions per state A. The agent can move from one state to another 
by performing some action a. the next state gives a reward to the agent. The goal of the agent is 
to maximize the total reward. If we compare all that with our proposed RL approach, the user is 
the agent, and the environment is our search engine platform with a query.

The ultimate goal for the agent is to find the optimal path to reach the final goal, which is 
returning the most relevant documents to the query. The initial state of the agent in our RL approach 
is the introduction of the query by the user and by doing all the steps presented in figure 2, and the 
objective (final state) is to return the most relevant documents, which are at the top of the list after 
calculating the recall. In our proposed RL system, the states are the list of documents obtained 
after choosing an action. In each state, the agent can take different actions to move from one state 
to another to reach the final goal. The actions of our approach are the different n-grams (1-gram, 
2-grams, 3-grams...). After that the agent chooses an action, his state will be changed, that is the list 
of his result will be changed, and the reward produced is obtained by calculating the accuracy of 
the result after calculating the semantic similarity between the query and documents in our corpus. 
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Figure 1. Agent–environment interaction

Figure 2. Our proposed approach system
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In each state, the goal is to choose the action that maximizes the semantic similarity to get the most 
relevant document with the n-gram.

Figure 1 shows how the agent interacts with the environment. In each step and after the agent 
take an action, his state will be changed, which means that his list of the relevant documents will be 
changed. For finding the list of the relevant documents, we used our semantic similarity approach 
presented earlier, and by calculating the accuracy of the result obtained, we find the reward produced 
by taking an action.

In our method, the agent will take actions (1-gram, 2-grams, 3- grams) and the environment will 
reward him (accuracy) based on the list of the documents obtained (hybrid semantic similarity between 
the documents in the corpus and the query in the input of the search engine). The goal of our approach 
is to know what n to use in n-gram (what action to use) to maximize the hybrid semantic similarity 
between the query and the documents. Therefore, the agent will discover by himself the actions that 
give the highest rewards by trying them. A user experience using our approach is composed of 4 
steps: a current state, take an action, next state (new state with new list of relevant document), and a 
reward (calculating the accuracy). The value function or the update function of our approach is the 
measure of accuracy for evaluating the result obtained; this measure consists in associating with each 
possible state an estimation of the value for the agent to be in this state.

To fully explain our approach, figure 2 will present how our system works based on RL approach.
According to figure 2, in each iteration of our system based on reinforcement learning, 

the agent choose n in n-gram and apply the different step presented in the previous sections, 
we start by text pre-processing to remove stop words, punctuations, URLs...etc; from the 
query and documents in our corpus, as presented in text Pre-processing method section, then 
we apply stemming to get the root words of different words, this step is important because 
we reduce complexity in our system and it will not affect the results because convert word 
to its stem will not lose the meaning of the word. After this step of stemming, the agent in 
our system will iterate the 3 actions (1-gram, 2-grams, and 3-grams), in the figure 2 A1 is the 
action 1 (by choosing 1-gram) A2 is the action 2 (by choosing 2-grams) and A3 is the action 3 
(by choosing 3-grams), the agent iterate all theses actions to define the n-grams of the query 
and each document in the corpus, for calculating the similarity, which will give us the most 
relevant documents. In the end, for each state (after choosing an action) we calculate the recall 
to get the reward. If we use for example 1-gram, 2-grams, and 3-grams, and we got in the recall 
25%, 50% and 75% respectively, so the agent will choose the 3-grams, which is the best path 
to get the most relevant document to our initial query.

3.8 Our Work Steps and Algorithm
As presented earlier, our approach is based on reinforcement learning using several important 
steps. We will present them in a form of MapReduce algorithm, which is a specific framework 
for distributed processing management in a large number of documents, our mapper contains 2 
steps, the first is to apply text processing to any document in our corpus to remove stop-words, 
punctuations, URLs...etc from text. The second is to get the stem of words in documents that help 
us to get better results in semantic similarity as we will see in our experimental results. Then 
we send the document id and the list of terms produced in the stemming step to the reducer. Our 
reducer does the necessary work to get the most relevant documents. The first step in the reducer 
is to apply the 2 functions in the mapper to our query, then get N-grams based on ’n’ in the input 
(in this paper we will work with n Î {1,2,3}). And finally, the calculation of semantic similarity 
between query and documents based on n-grams model. Here the agent in our system needs 
to calculate semantic similarity in each action (1-gram, 2-grams, 3-grams) and get the reward 
(recall) returned by these actions to decide which actions return the most relevant documents to 
select this path and return the optimal result to the user.
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Algorithm 1: Method Mapper

Input: Corpus 
Output: Indexed documents for document ∈ Corpus do
    TPD ← Text Processing(document);
    STD ← Stemming(TPD);
    for term ∈ STD do
              write(Docid, term); 
    end
end

Algorithm 2: Method Reducer

Input: Docid, List(term) 
Output: Most relevant documents
  n ← 1 ;
  TPQ ← Text Processing(Query) ; 
  STQ ← Stemming(TPQ) ; 
  while n ≤ 3 do
    NGD ← Ngrams(List(term),n) ;
    NGQ ← Ngrams(STQ,n) ;
    Vector(d) ← indexing(NGD) ;
    Vector(q) ← indexing(NGQ) ;
    C ← Cosine(Vector(q),Vector(d)) ;
    SimLC ← SimilarityLC(NGQ,NGD) ; 
    Sim ← ½ * (C + SimLC);
    SimDoc[n] ← getSimilarDocuments(n,List(Sim)) ; 
    Accuracy[n] ← getAccuracy(SimDoc[n]);
    n++ ; 
end
RelevantN ¬ Max(Accuracy) ; 
Relevant_Documents(RelevantN) ;

•	 Text Processing(document): is a function that allows removing stop-word from the text in 
corpus and query.

•	 Stemming(TPQ): is a function that converts words in text returned by the first function in their 
stem to get better results.

•	 Ngrams(STQ, n): is the function that returns the n-grams based on n in the input.
•	 Cosine(Vector(q), Vector(d)): Calculate the cosine similarity between query and document in 

the corpus.
•	 SimilarityLC(NGQ, NGD): Calculate the similarity semantic using Leacock and Chodorow 

approach based on n-grams model.
•	 getSimilarDocuments(n, List(Sim)): is the function that return the relevant documents for 

n-grams using a threshold, which means returning the documents with a degree of similarity 
greater than or equal the threshold.

•	 getAccuracy(SimDoc[n]): is the function that return the accuracy of the relevant documents 
using n-gram.

•	 Max(Accuracy): a function that returns the maximum of accuracy in 1,2 and 3grams.
•	 Relevant_Documents(RelevantN): is the function that return the relevant documents based on 

n-gram with the max accuracy.
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4. EXPERIMENTAL RESULTS

In this section, we going to present some experimental results of our work. To evaluate our new 
similarity approach based on the reinforcement learning, we conduct extensive performance study, 
the experiment is to run our MapReduce algorithm with a variable number of documents in the input 
(in the corpus stored in HDFS). We compute the semantic similarity measure between the query and 
all the documents in the corpus, and we going to compare the accuracy of the obtained result with 
other approaches from the literature.

Our first experiment consists of comparing the semantic similarity between the first 10 returned 
documents in our system. The agent in our system iterates the three actions (1-gram, 2-grams, and 
3-grams). In each action, it calculates the semantic similarity, which produces a new state, and by 
calculating the reward (the accuracy of the result), it evaluates the result obtained by taking such 
action. Figure 3 shows the results obtained.

According to Fig. 3, we remark that the agent in our system(based on our dataset) finds for all 
documents that the semantic similarity of the third actions (3-grams) is better than the semantic 
similarity if we use the action 1 (1-gram) or the action 2 (2-grams) using our corpus. In this case, 
the agent will choose the action 3 to return the most relevant documents, but not always the action 
3 is the one which we will use to get the most relevant document, by the use of another corpus or 
by changing the query we can find that the action 1 or 2 give us the best results, it is the purpose of 
our proposed approach based on reinforcement learning, that is to let the agent choose which action 
gives better results and return the most relevant documents to the user.

In the first experiment, we demonstrated that the semantic similarity based on action 3 (3-grams) 
is more efficient than the others (according to our query and dataset). In this second experiment, we 
will show how stemming is important for our approach to give us better results. Figure 4 shows the 
results obtained.

According to Fig. 4, we conclude that the use of stemming improves the semantic similarity 
score, for that we chose to work with stemming in our proposed approach.

In the next experiment, we compared our proposed approach based on reinforcement learning 
using n-grams with several approaches in the literature, such as the hybrid approach (El hadi & al, 
2019) based on a syntactic and a semantic similarity that we have based in this paper to calculate 
semantic similarity, Wu & Palmer (Wu & Palmer 1994) and Resnik approach (Resnik 1999).

Figure 5 shows the results obtained.
According to Fig. 3 the agent in our system, choose the action 3 to define his path to return the 

most relevant document using our corpus, and as you can see in the figure 5, there is a huge difference 
in semantic similarity score between our proposed approach based on reinforcement learning and the 
hybrid approach (El hadi & al, 2019). The figure shows also that the use of reinforcement learning 
outperforms some other approaches of the literature.

Figure 3. Semantic similarity by n-grams
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Table 4 shows the precision, recall, and F1 of our proposed approach based on reinforcement 
learning, it shows how our new approach is effective compared to our previous approach described 
in the literature.

5. CONCLUSION

In this work, we have presented a new approach based on reinforcement learning using n-grams. 
Our approach deals with the problem of getting the most relevant documents in a search engine. Our 
proposed method is based on a new reinforcement learning approach using n-grams for finding the 

Figure 4. Semantic similarity without stemming

Figure 5. Semantic similarity of our Approach Compared to others approaches
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optimal path with which the user of a search engine must follow to get the desired results. We have 
shown that the use of n-grams added positive value to the proposed approach.

The proposed semantic similarity method is developed using the Hadoop framework with the 
Hadoop Distributed File System (HDFS) and the MapReduce programming model.

We compared our approach with existing measures in the literature like the Hybrid approach, Wu 
and Palmer or Leacock and Chodorow. The experimental results show that using n-grams improves 
the semantic similarity score of our method and that our proposed approach outperforms some other 
methods from the literature.

Our next work will consist in proposing a new multilingual approach that use a new 
recommendation method in order to enhance the results of our search engine.
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Table 4. Similarity of our Approach Compared to others

Precision Recall F1

Proposed approach (RL) 60% 42.85% 49.99%

Hybrid approach 40% 28.57% 33.33%



Journal of Information Technology Research
Volume 15 • Issue 1

16

REFERENCES

Azizan, A., Abu Bakar, Z., & Noah, S. A. (2016). Query reformulation using ontology and keyword for durian 
web search. In Third International Conference on Information Retrieval and Knowledge Management (CAMP). 
IEEE. doi:10.1109/INFRKM.2016.7806342

Cai, Y., Zhang, Q., Lu, W., & Che, X. (2018). A hybrid approach for measuring semantic similarity based on 
IC-weighted path distance in WordNet. Journal of Intelligent Information Systems, 51(1), 23–47. doi:10.1007/
s10844-017-0479-y

Carlberger, J., Dalianis, H., Hassel, M., & Knutsson, O. (2001). Improving Precision in Information Retrieval for 
Swedish Using Stemming. Proceedings of NODALIDA’01 13th Nordic Conference on Computational Linguistics.

Cho, S., Lebanoff, L., Foroosh, H., & Liu, F. (2019). Improving the Similarity Measure of Determinantal Point 
Processes for Extractive Multi-Document Summarization. Proceedings of the Annual Meeting of the Association 
for Computational Linguistics (ACL). doi:10.18653/v1/P19-1098

Derhami, V., Khodadadian, E., Ghasemzadeh, M., & Bidoki, A. M. Z. (2013). Applying reinforcement learning 
for web pages ranking algorithms. Applied Soft Computing, 13(4), 1686–1692. doi:10.1016/j.asoc.2012.12.023

El hadi, A., Madani, Y., El Ayachi, R., & Erritali, M. (2019). A new semantic similarity approach for improving 
the results of an Arabic search engine. Procedia Computer Science, 151, 1170-1175. .10.1016/j.procs.2019.04.167

Gao, J. B., Zhang, B. W., & Chen, X. H. (2015). A WordNet-based semantic similarity measurement combining 
edge-counting and information content theory. Engineering Applications of Artificial Intelligence, 39, 80–88. 
doi:10.1016/j.engappai.2014.11.009

Karun, K. A., & Chitharanjan, K. (2013). A Review on Hadoop-HDFS Infrastructure Extensions. Proceedings 
of 2013 IEEE Conference on Information and Communication Technologies (ICT 2013). doi:10.1109/
CICT.2013.6558077

Leacock & Chodorow. (1994). Filling in a sparse training space for word sense identification. Ms. March.

Makvana, K., Shah, P., & Shah, P. (2014). A novel approach to personalize web search through user profiling 
and query reformulation. In International Conference on Data Mining and Intelligent Computing (ICDMIC). 
IEEE. doi:10.1109/ICDMIC.2014.6954221

Narasimhan, K., Yala, A., & Barzilay, R. (2016). Improving informationextraction by acquiring external evidence 
with reinforcement learning. Proceedings of the 2016 Conference on Empirical Methods in Natural Language 
Processing, 2355–2365. doi:10.18653/v1/D16-1261

Nogueira, R., & Cho, K. (2017). Task oriented query reformulation with reinforcement learning. Proceedings 
of the 2017 Conference on Empirical Methods in Natural Language Processing, 585–594. doi:10.18653/v1/
D17-1061

Resnik, P. (1999). Semantic similarity in a taxonomy: An information based measure and its application to 
problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 11, 95–130.

Robertson, S. E., & Walker, S. (1994). Some simple effective approximations to the 2-poissonmodel for 
probabilistic weighted retrieval. Proceedings of SIGIR Conference on Research and Development in Information 
Retrieval, 232–241. doi:10.1007/978-1-4471-2099-

Sutton, R. S., & Barto, A. G. (2013). Reinforcement Learning: An Introduction. Journal of Machine Learning 
Research, 14, 399–436.

Verma, A., Mansuri, A. H., & Jain, N. (2016). Big Data Management Processing withHadoop MapReduce 
and Spark Technology: A Comparison. Proceedings of the 2016 Symposium on Colossal Data Analysis and 
Networking (CDAN).

Wu, J., & Hong, B. (2015). Multicast-based Replication for Hadoop. Proceedings of2015 IEEE SNPD 2015.

Wu, Z., & Palmer, M. (1994). Verb semantics and lexical selection. Proceedings of the 32nd Annual Meeting 
of the Associations for Computational Linguistics, 133-138.

http://dx.doi.org/10.1109/INFRKM.2016.7806342
http://dx.doi.org/10.1007/s10844-017-0479-y
http://dx.doi.org/10.1007/s10844-017-0479-y
http://dx.doi.org/10.18653/v1/P19-1098
http://dx.doi.org/10.1016/j.asoc.2012.12.023
http://dx.doi.org/10.1016/j.engappai.2014.11.009
http://dx.doi.org/10.1109/CICT.2013.6558077
http://dx.doi.org/10.1109/CICT.2013.6558077
http://dx.doi.org/10.1109/ICDMIC.2014.6954221
http://dx.doi.org/10.18653/v1/D16-1261
http://dx.doi.org/10.18653/v1/D17-1061
http://dx.doi.org/10.18653/v1/D17-1061
http://dx.doi.org/<ALIGNMENT.qj></ALIGNMENT>10.1007/978-1-4471-2099-


Journal of Information Technology Research
Volume 15 • Issue 1

17

Amine El Hadi obtained a master’s degree in business intelligence from the faculty of science and technics, Beni 
Mellal, Morocco in 2017, and he is a Ph.D. Student in Sultan Moulay Slimane University, faculty of sciences and 
technics, Beni Mellal, Morocco. His current interests focuses on Big Data, information retrieval, machine learning, 
semantic web.

Youness Madani obtained a master’s degree in business intelligence from the faculty of science and technics, 
Beni Mellal, Morocco in 2016, and a Ph.D. in Computer Sciences from Sultan Moulay Slimane University, faculty 
of sciences and technics, Beni Mellal, Morocco, in 2019. His current interests include developing new methods and 
algorithms related to data science, data mining, Big Data, information retrieval, machine learning, and e-learning.

Rachid El Ayachi obtained a degree in Master of Informatic Telecom and Multimedia (ITM) in 2006 from the Faculty 
of Sciences, Mohammed V University (Morocco) and a Ph.D. degree in computer science from the Faculty of 
Science and Technology, Sultan Molay Slimane University (Morocco). He is currently a member of laboratory 
TIAD and a professor at the Faculty of Science and Technology, Sultan Moulay Slimane University, Morocco. His 
research focuses on image processing, pattern recognition, machine learning, semantic web.

M. Erritali obtained a master’s degree in business intelligence from the faculty of science and Techniques, Beni 
Mellal at Morocco in 2010 and a Ph.D. degree in Computer Sciences from the faculty of sciences, Mohamed V Agdal 
University, Rabat, Morocco in 2013. His current interests include developing specification and design techniques 
for use within Intelligent Network, data mining, information Retrieval, image processing and cryptography. He is 
currently a professor at the Faculty of Science and Techniques, University Sultan Moulay Slimane, and also a 
member of the TIAD laboratory.


